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Abstract

We consider the problem of computing the minimum value pmin taken by a polynomial p(x) of degree d over the standard
simplex �. This is an NP-hard problem already for degree d = 2. For any integer k�1, by minimizing p(x) over the set of rational
points in � with denominator k, one obtains a hierarchy of upper bounds p�(k) converging to pmin as k −→ ∞. These upper
approximations are intimately linked to a hierarchy of lower bounds for pmin constructed via Pólya’s theorem about representations
of positive forms on the simplex. Revisiting the proof of Pólya’s theorem allows us to give estimates on the quality of these upper
and lower approximations for pmin. Moreover, we show that the bounds p�(k) yield a polynomial time approximation scheme for
the minimization of polynomials of fixed degree d on the simplex, extending an earlier result of Bomze and De Klerk for degree
d = 2.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Problem definition and complexity

We consider the problem of minimizing a polynomial p(x) of degree d on the standard simplex

� :=
{
x ∈ Rn+

∣∣∣∣ n∑
i=1

xi = 1

}
;
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that is, the problem of computing

pmin := min
x∈�

p(x). (1.1)

One may assume w.l.o.g. that p(x) is a homogeneous polynomial (form). Indeed, as observed in [7], if p(x) =∑d
�=0 p�(x), where p�(x) is homogeneous of degree �, then minimizing p(x) over � is equivalent to minimizing the

degree d form p′(x) := ∑d
�=0 p�(x)(

∑n
i=1 xi)

d−�. We will use the standard compact notation:

p(x) = ∑
�

p�x
�,

where the summation is over � ∈ Zn+ with finitely many nonzero terms, and x� := x
�1
1 . . . x

�n
n . Setting |�| := ∑n

i=1 �i ,
then |�| = d for all nonzero terms when p is a degree d form.

Problem (1.1) is an NP-hard problem, already for forms of degree d = 2, as it contains the maximum stable set
problem. Indeed, let G be a graph with adjacency matrix A and let I denote the identity matrix; then the maximum size
�(G) of a stable set in G can be expressed as

1

�(G)
= min

x∈�
xT(I + A)x

by the theorem of Motzkin and Straus [9].

1.2. Upper bounds using a rational grid

Given an integer k�1, let

�(k) := {x ∈ � | kx ∈ Zn} (1.2)

denote the set of rational points in � with denominator k and define

p�(k) := min p(x) s.t. x ∈ �(k). (1.3)

Thus, pmin �p�(k) for any k�1. As |�(k)| = (
n+k−1

k
), one can compute the bound p�(k) in polynomial time for any

fixed k. Set

pmax := max
x∈�

p(x). (1.4)

When p(x) is a form of degree d = 2, Bomze and De Klerk [5] show that the following inequality holds:

p�(k) − pmin � 1

k
(pmax − pmin) (1.5)

for any k�1.
Using a probabilistic approach, Nesterov [11] gave a different proof of (1.5), and proved the following result for the

case when p(x) is a form of degree d which is a sum of square-free monomials; that is, a monomial x� appears with a
nonzero coefficient in p(x) only if �i �1 for all i = 1, . . . , n. Then, for k�d,

p�(k) − pmin �
(

1 − k!
(k − d)!kd

)
(−pmin)�

d(d − 1)

2k
(−pmin). (1.6)

1.3. Lower bounds using Pólya’s representation theorem

A second—and closely related—way of obtaining approximations to pmin, is via Pólya’s representation theorem for
positive forms on the simplex.
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We need to introduce the following parameters for a polynomial p(x) = ∑
� p�x

�:

Lp := max
�

|p�|�1! · · · �n!
|�|! , (1.7)

p(0)
max := max

�
p�

�1! · · · �n!
|�|! (1.8)

which obviously satisfy: p
(0)
max �Lp.

Theorem 1.1. Let p be a form of degree d which is positive on the simplex �, i.e., pmin > 0. Then the polynomial
(
∑n

i=1 xi)
rp(x) has nonnegative coefficients for all r satisfying

r �
(

d

2

)
p

(0)
max

pmin
− d. (1.9)

Pólya [17] proved that (
∑n

i=1 xi)
rp(x) has nonnegative coefficients for r large enough. Powers and Reznick [18]

proved that this holds for any r �(
d
2 )Lp/pmin − d . We observe here that this holds for any r satisfying the weaker

condition (1.9) (with Lp replaced by p
(0)
max); see Section 2.1 for a proof.

Now let us indicate how Pólya’s result can be used for constructing an asymptotically converging hierarchy of lower
bounds for pmin. Observe first that pmin can alternatively be formulated as the maximum scalar � for which p(x)−��0
for all x ∈ �. Equivalently,

pmin = max � such that p(x) − �

(
n∑

i=1
xi

)d

�0 ∀x ∈ Rn+.

For any integer r �0, define the parameter:

p
(r)
min := max � s.t. the polynomial p(r)(x) :=

(
n∑

i=1
xi

)r
(

p(x) − �

(
n∑

i=1
xi

)d
)

has nonnegative coefficients.

For the problem of maximizing p(x) over �, one can analogously define the parameter p
(r)
max as the minimum scalar �

for which the polynomial −p(r)(x) has nonnegative coefficients. One can verify (see Section 2.1) that

p
(0)
min = min

�
p�

�1! · · · �n!
d! , p(0)

max = max
�

p�
�1! · · · �n!

d! ; (1.10)

that is, we find again the value from (1.8) for p
(0)
max. Obviously,

p
(0)
min �p

(r)
min �p

(r+1)
min �pmin.

Moreover, p
(r)
min �0 if and only if the polynomial (

∑n
i=1 xi)

rp(x) has nonnegative coefficients. Hence, Theorem 1.1

asserts that p
(r)
min �0 for any r satisfying (1.9). The bound p

(r)
min can be computed in polynomial time for any fixed r, as

it can be expressed as the minimum over the grid �(r + d) of a perturbation of the polynomial p(x); see relation (2.3).
As a consequence of Pólya’s theorem, the bounds p

(r)
min converge asymptotically to pmin as r → ∞.

This idea of using Pólya’s result for constructing converging approximations goes back to the work of Parrilo [15,16],
who used it for constructing hierarchies of conic relaxations for the cone of copositive matrices (corresponding to degree
2 positive semidefinite forms). The construction was extended to general positive semidefinite forms by Faybusovich
[7], and Zuluaga et al. [24]. Faybusovich [7] proved:

Theorem 1.2. Let p(x) be a form of degree d and r �0 an integer. Then,

pmin − p
(r)
min �(Lp − pmin)

(
1

wr(d)
− 1

)
, (1.11)
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where

wr(d) := (r + d)!
r!(r + d)d

=
d−1∏
i=1

(
1 − i

r + d

)
. (1.12)

One can verify that

1 −
(

d

2

)
1

r + d
�wr(d)�1, (1.13)

which implies that limr→∞ wr(d) = 1. Thus one finds again that the sequence p
(r)
min converges to pmin as r → ∞.

1.4. Main results of this paper

In this paper we prove new bounds on the quality of the approximations p�(k) and p
(r)
min. In particular, we show the

following.

Theorem 1.3. Let p(x) be a form of degree d and r �0 an integer. Then,

pmin − p
(r)
min �

(
1

wr(d)
− 1

)(
2d − 1

d

)
dd(pmax − pmin), (1.14)

p�(r+d) − pmin �(1 − wr(d))

(
2d − 1

d

)
dd(pmax − pmin). (1.15)

The motivation for proving bounds of this type comes from approximation theory. In order to explain this we recall
the definition of an �-approximation in nonlinear programming. The next definition has been used by several authors,
in particular, by Ausiello, d’Atri and Protasi [2], Bellare and Rogaway [3], Nemhauser et al. [10], Nesterov et al. [12],
Vavasis [23].

Definition 1.4. Consider the optimization problems:

�max := max{�(x) : x ∈ S}, �min := min{�(x) : x ∈ S},
where � : Rn → R is continuous and S is a compact convex set. Given � > 0, a value �� is said to approximate �min
with relative accuracy � if

|�� − �min| � �(�max − �min).

Then one also says that �� is a �-approximation of �min. The approximation is called implementable if �� = �(x) for
some x ∈ S.

As is customary, we speak of a polynomial time approximation scheme (PTAS) if an implementable �-approximation
can be computed in polynomial time for every fixed � > 0. Formally, we have the following definition.

Definition 1.5 (PTAS). If a problem allows an implementable approximation �� = �(x�) for each � > 0, such that
x� ∈ S can be computed in time polynomial in n and the bit size required to represent �, we say that the problem allows
a polynomial time approximation scheme (PTAS).

For the problem of minimizing a form over the simplex, this definition may be summarized as follows.

Definition 1.6. Consider the problem (1.1) of minimizing a degree d form p on the standard simplex. A PTAS for this
problem exists if, for every � > 0, there is an algorithm that returns a solution x ∈ � satisfying

p(x) − pmin �(pmax − pmin)� (1.16)

in time polynomial in n and the bit size of the coefficients of p.



214 E. de Klerk et al. / Theoretical Computer Science 361 (2006) 210 –225

In view of these definitions, our results in Theorem 1.3 imply the following complexity result.

Theorem 1.7. There exists a PTAS for the problem class of minimizing a form of fixed degree d �2 over the
simplex �.

In contrast, Bellare and Rogaway [3] proved that if P �= NP and � ∈ (0, 1
3 ), there is no polynomial time

�-approximation algorithm for the problem of minimizing a polynomial of total degree d �2 over a feasible region
S = {x ∈ [0, 1]n | Ax�b}. What Theorem 1.7 shows is that there is a PTAS in the special case when S is the
standard simplex.

Note that the approximation result from Theorem 1.2 does not constitute a PTAS since it is not clear how to bound
Lp −pmin in terms of pmax −pmin. The reason is that the quantity Lp is independent of pmax in general as Example 1.8
below illustrates. As argued by Vavasis [23] (see also [2]), the definition of an �-approximation adopted in Definition
1.4 has some useful invariance properties. For instance, it is invariant under dilation of the objective function, as
well as under the addition of a function g(x) constant on the feasible region (e.g., g(x) = t (

∑n
i=1 xi)

r in our case
of optimization over the simplex �); that is, if the objective function � is replaced by a� + g (a > 0) then an �-
approximation for � remains an �-approximation for the new objective function. This invariance property would be lost
if one would replace in (1.16) the parameter pmax by the parameter Lp (as in (1.11)). The following example illustrates
this too.

Example 1.8. Consider the problem of minimizing a quadratic form p(x) := xTQx on the standard simplex �. Thus,
Lp = max1� i � j �n |Qij |. Now let us transform the problem data by replacing Q by Q − tJ for some t > 0, where J
denotes the all-ones matrix. That is, define

pt (x) := xT(Q − tJ )x = p(x) − t

(
n∑

i=1
xi

)2

.

Thus, pt (x) = p(x) − t if x ∈ �. This transformation does not change the global minimizer, nor does it change the
range (pt )max − (pt )min of the modified objective function. In other words, if x ∈ � defines an �-approximation for
the original problem, it also defines an �-approximation for the modified problem.

However, Lpt − (pt )min is clearly an increasing function of t for sufficiently large t. Therefore, one cannot bound
Lpt − (pt )min in terms of (pt )max − (pt )min = pmax − pmin.

Let us now argue that, if we replace in (1.16) the parameter pmax by Lp (as in (1.11)), then we obtain an alternative
notion of �-approximation that is not invariant under addition of a function constant on �. Indeed, given x ∈ � and
t �0, define �t via

pt (x) − (pt )min = �t (Lpt
− (pt )min).

That is, x is an �t -approximation for (pt )min using the “new definition”. If the invariance property would hold for the
new definition, then �t would be independent of t. This is not the case, since �t goes to 0 as t goes to ∞.

2. Approximating forms on the simplex: Proofs

2.1. Estimating the upper and lower approximations p�(r+d) and p
(r)
min for pmin via Pólya’s theorem

We use the following notation. Given � ∈ Nn, set

�! := �1! · · · �n!
and, following [18], given scalars x, t and a nonnegative integer m, set

(x)mt := x(x − t) · · · (x − (m − 1)t) =
m−1∏
i=0

(x − it).
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Then, (1)d1/(r+d) = wr(d), the parameter defined in (1.12). Define

I (n, m) := {� ∈ Nn : |�| =
n∑

i=1
�i = m}.

We use the multinomial identity(
n∑

i=1
xi

)m

= ∑
�∈I (n,m)

m!
�! x� (2.1)

and its generalization, known as the Vandermonde–Chu identity(
n∑

i=1
xi

)m

t

= ∑
�∈I (n,m)

m!
�! (x1)

�1
t · · · (xn)

�n
t . (2.2)

(See [18] for a proof. Alternatively, use induction on m�1.)
In what follows, p(x) is a form of degree d and r �0 is an integer. By definition, p

(r)
min is the maximum scalar �

for which the polynomial (
∑

i xi)
rp(x) − �(

∑
i xi)

r+d has nonnegative coefficients. We begin with evaluating the
coefficients of this polynomial. We have

(
n∑

i=1
xi

)r+d

= ∑
�∈I (n,r+d)

(r + d)!
�! x�,

p(x)

(
n∑

i=1
xi

)r

= ∑
�∈I (n,r+d)

A�x�

where

A� := ∑
�∈I (n,d), ���

r!
(� − �)!p� = r!(r + d)d

�!
∑

�∈I (n,d)

p�
n∏

i=1

(
�i

r + d

)�i

1/(r+d)

.

Therefore, p
(r)
min is the maximum � for which A� − �(r + d)!/�!�0 for all � ∈ I (n, r + d); that is,

p
(r)
min = min

�∈I (n,r+d)

�!
(r + d)!A� = min

�∈I (n,r+d)

1

wr(d)

∑
�∈I (n,d)

p�
n∏

i=1

(
�i

r + d

)�i

1/(r+d)

. (2.3)

As the point x := �/(r + d) belongs to �(r + d), it follows that

p
(r)
min = min

x∈�(r+d)

1

wr(d)

∑
�∈I (n,d)

p�(x1)
�1
1/(r+d) · · · (xn)

�n

1/(r+d). (2.4)

As in [18], define the polynomial

�(x) := p(x) − ∑
�∈I (n,d)

p�(x1)
�1
1/(r+d) · · · (xn)

�n

1/(r+d) = ∑
�∈I (n,d)

p�(x
� − (x1)

�1
1/(r+d) · · · (xn)

�n

1/(r+d)) (2.5)

and set

�max := max
x∈�(r+d)

�(x).

Then,

p
(r)
min = 1

wr(d)
min

x∈�(r+d)
(p(x) − �(x)). (2.6)
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This implies

p
(r)
min � 1

wr(d)
(p�(r+d) − �max)

and thus, as p�(r+d) �pmin �p
(r)
min,

p
(r)
min � 1

wr(d)
(pmin − �max), (2.7)

p�(r+d) �wr(d)pmin + �max. (2.8)

Therefore,

pmin − p
(r)
min �

(
1 − 1

wr(d)

)
pmin + 1

wr(d)
�max, (2.9)

p�(r+d) − pmin �wr(d)

((
1 − 1

wr(d)

)
pmin + 1

wr(d)
�max

)
. (2.10)

We are now in a position to prove the following result which implies the bound (1.11) by Faybusovich [7],
since p

(0)
max �Lp.

Theorem 2.1. Let p be a form of degree d and r �0 an integer. Then,

pmin − p
(r)
min �(p(0)

max − pmin)

(
1

wr(d)
− 1

)
, (2.11)

p�(r+d) − pmin �(p(0)
max − pmin)(1 − wr(d)). (2.12)

Proof. As x� �
∏n

i=1(xi)
�i

1/(r+d) and p� �p
(0)
maxd!/�! (by the definition of p

(0)
max), we find that

�(x)�p(0)
max

∑
�∈I (n,d)

d!
�!
(

x� −
n∏

i=1
(xi)

�i

1/(r+d)

)
.

In view of relations (2.1) and (2.2), the right-hand side is equal to

p(0)
max

((
n∑

i=1
xi

)d

−
(

n∑
i=1

xi

)d

1/(r+d)

)
= p(0)

max(1 − wr(d)).

Therefore,

�max �p(0)
max(1 − wr(d)). (2.13)

This inequality, combined with (2.9) and (2.10), gives the inequalities (2.11) and (2.12) from Theorem 2.1. �

Proof of Theorem 1.1. Assume that pmin > 0 and r �(
d
2 )p

(0)
max/pmin − d. Then, (2.13) combined with the bound on

wr(d) from (1.13) implies that �max �p
(0)
max(

d
2 )1/(r + d). Now, (2.7) implies that p

(r)
min �(1/wr(d))(pmin

− p
(0)
max(

d
2 )1/(r + d)), which is nonnegative by our assumption on r. This shows that p

(r)
min �0 for such r; that is,

Theorem 1.1 holds. �

Proving the inequality (1.6) for polynomials that are sums of square-free monomials: Assume that p� = 0
whenever �i �2 for some i = 1, . . . , n. Then the polynomial �(x) from (2.5) is identically zero. Thus �max = 0
and the estimate (1.6) follows directly from (2.10) (with k = r + d and using (1.13)).
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2.2. Estimating the maximum coefficient range of a polynomial

In this section we prove our main result, Theorem 1.3. As p
(0)
max − pmin �p

(0)
max − p

(0)
min, Theorem 1.3 will follow

directly from the next result, which estimates p
(0)
max − p

(0)
min in terms of pmax − pmin, combined with Theorem 2.1.

Theorem 2.2. The following holds for a form p(x) of degree d:

p(0)
max − p

(0)
min �

(
2d − 1

d

)
dd(pmax − pmin). (2.14)

We now prove Theorem 2.2. Following Reznick [20], let us introduce the following definitions.
Recall that I (n, d) = {� ∈ Zn+ : |�| = d} and let Fn,d denote the set of forms of degree d in n variables. For p ∈ Fn,d ,

write

p(x) = ∑
�∈I (n,d)

p�x
� = ∑

�∈I (n,d)

a(p, �)
d!
�! x

�,

after setting

a(p, �) := p�
�!
d! for � ∈ I (n, d).

For � ∈ Rn, define the degree d form

P�(x) := (�Tx)d for x ∈ Rn.

Define the inner product on Fn,d :

〈p, q〉 := ∑
�∈I (n,d)

a(p, �)a(q, �)
d!
�! for p, q ∈ Fn,d .

As P�(x) = ∑
�∈I (n,d)(d!/�!)��x�, it follows that, for any p ∈ Fn,d ,

〈p, P�〉 = p(�) for � ∈ Rn. (2.15)

Moreover,

〈p, x�〉 = a(p, �) for � ∈ I (n, d). (2.16)

Finally, given � ∈ I (n, d), define the polynomials

h�(x) :=
n∏

j=1

�j −1∏
�j =0

(dxj − �j (x1 + · · · + xn)), h∗
�(x) := 1

�!dd
h�(x). (2.17)

Lemma 2.3 (Reznick [20]). For �, �′ ∈ I (n, d), 〈h∗
�, P�′ 〉 = 1 if � = �′ and 0 otherwise.

Proof. Direct verification. �

Corollary 2.4 (Reznick [20]). The set {P� | � ∈ I (n, d)} is a basis of the vector space Fn,d .

The above results can be found in this form in Reznick [20, Section 2], who extended an old result of Biermann in
1903 for the ternary case. They claim in fact the existence and uniqueness of an interpolation homogeneous polynomial
of degree d taking prescribed values at the points of I (n, d) (equivalently, at the points of the rational grid �(d)) and
as such can also be found in Nicolaides [13].
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Let A be the |I (n, d)| × |I (n, d)| matrix permitting to express the monomial basis {x� | � ∈ I (n, d)} in terms of the
basis {P� | � ∈ I (n, d)}. That is,

x� = ∑
�∈I (n,d)

A(�, �)P�(x). (2.18)

For p ∈ Fn,d , by taking the inner product in (2.18) with p and using (2.15) and (2.16), we find

a(p, �) = ∑
�∈I (n,d)

A(�, �)p(�) for � ∈ I (n, d). (2.19)

Taking the inner product in (2.18) with h∗
�, we find

a(h∗
�, �) = 〈h∗

�, x�〉 = A(�, �) for �, � ∈ I (n, d). (2.20)

In view of (1.10), our parameters p
(0)
max and p

(0)
min can be expressed as

p(0)
max = max

�∈I (n,d)
a(p, �), p

(0)
min = min

�∈I (n,d)
a(p, �).

Define the vectors x := (p(�))�∈I (n,d) and y := (a(p, �))�∈I (n,d). In view of (2.19), they are related by the relation

y = Ax. (2.21)

Denote by xmax (resp., xmin) the largest entry (resp., smallest entry) of x; similarly for y. Thus,

ymax − ymin = p(0)
max − p

(0)
min.

For � ∈ I (n, d), p(�) = p(�/d)dd . Thus,

xmax − xmin �dd(pmax − pmin). (2.22)

Our strategy for proving Theorem 2.2 consists of showing the following two results.

Proposition 2.5. Let A be an N ×N matrix satisfying Ae = �e for some scalar �, where e denotes the all-ones vector,
and set

‖A‖∞ := max
i=1,...,N

N∑
k=1

|A(i, k)|.

If y = Ax, then ymax − ymin �‖A‖∞(xmax − xmin).

Proposition 2.6. Let A be the matrix defined in (2.20); that is, A = (A(�, �) := a(h∗
�, �))�,�∈I (n,d). Then, Ae =

(1/dd)e and ‖A‖∞ �(
2d−1

d
).

2.2.1. Proof of Proposition 2.5
Assume y = Ax where A = (aik)

N
i,k=1. At row i, yi = ∑N

k=1 aikxk . Thus,

yi �
( ∑

k|aik �0
aik

)
xmax −

( ∑
k|aik �0

|aik|
)

xmin = r+
i xmax − r−

i xmin,

after setting

r+
i := ∑

k|aik �0
aik, r−

i := ∑
k|aik �0

|aik|.

Similarly,

yj �r+
j xmin − r−

j xmax.
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Therefore, for any i, j = 1, . . . , N ,

yi − yj �(r+
i + r−

j )xmax − (r−
i + r+

j )xmin.

Note that axmax − bxmin �(a + b)/2(xmax − xmin) if and only if (b − a)(xmax + xmin)�0. Here, a = r+
i + r−

j ,

b = r−
i + r+

j , b − a = ∑
k ajk −∑

k aik = 0, and b + a = ∑
k |aik| + |ajk|. Therefore,

yi − yj � 1

2

(
N∑

k=1
|aik| + |ajk|

)
(xmax − xmin)

and

yj − yi �
1

2

(
N∑

k=1
|aik| + |ajk|

)
(xmax − xmin).

This implies that, for any i, j ,

|yi − yj |� 1

2

(
N∑

k=1
|aik| + |ajk|

)
(xmax − xmin)�

(
max

i

∑
k

|aik|
)

(xmax − xmin);

that is,

ymax − ymin �‖A‖∞(xmax − xmin).

2.2.2. Proof of Proposition 2.6
Let us first prove that Ae = d−de. For this consider the polynomial p(x) := (

∑n
i=1 xi)

d . Then, a(p, �) = 1 and
p(�) = dd for all � ∈ I (n, d). Thus, x := (p(�))�∈I (n,d) = dde and y := (a(p, �))�∈I (n,d) = e. As y = Ax by (2.21),
it follows that Ae = d−de.

Recall that A(�, �) = a(h∗
�, �) = a(h�, �)1/�!dd . Thus, A(�, �) is equal to the coefficient of x� in h�(x) scaled by

the factor (�!/d!)(1/�!dd). We proceed in two steps for proving that

‖A‖∞ = max
�∈I (n,d)

∑
�∈I (n,d)

|A(�, �)|�
(

2d − 1

d

)
.

(1) First, we show that each entry of A is bounded in absolute value by 1.
(2) Second, we show that there are at most (

2d−1
d

) nonzero entries in any row of A.
Those two facts imply obviously the desired result.
Step (1): Bounding the entries of A. By definition, h�(x) is defined as the product of d linear forms: f1(x) =∑n
i=1 f1ixi , . . . , fd(x) = ∑n

i=1 fdixi . Thus,

h�(x) = ∑
i1=1,...,n

. . .
∑

id=1,...,n

f1i1 · · · fdid xi1 · · · xid =: ∑
�∈I (n,d)

s�x
�,

where s� = ∑
f1i1 · · · fdid and the summation is over all d-tuples (i1, . . . , id) ∈ {1, . . . , n}d containing 1 exactly �1

times, 2 exactly �2 times, . . . , n exactly �n times.
First of all, each product f1i1 · · · fdid is bounded in absolute value by dd . Indeed, the linear forms fj (x) are of the

form: (d − �)x1 − �x2 · · · − �xn; thus their coefficients belong to {−d, −d + 1, . . . , 0, 1, . . . , d}.
Let us now count the number of terms in the summation defining s�. It is equal to (

d
�1

) · (
d−�1
�2

) · · · ( d−�1−···−�n−1
�n

),
which is equal to d!/�!.

Summarizing, we find that |s�|�dd(d!/�!). Hence, |A(�, �)| = |s�|(�!/d!)(1/�!dd)�1/�!�1.
Step (2): Bounding the number of nonzero entries in a row of A: Write h�(x) = ∏n

j=1 Pj (x), where

Pj (x) =
�j −1∏
�j =0

(
(d − �j )xj − ∑

i=1,...,n, i �=j

�j xi

)
.

Fix � ∈ I (n, d) and consider the �th row of A. We want to bound the number of �’s for which A(�, �) �= 0; that is, the
number of �’s for which x� occurs with a nonzero coefficient in h�(x).
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Consider some � for which A(�, �) �= 0. Say, supp(�) = {1, . . . , t}; that is, �1 �1, . . . , �t �1, �t+1 = · · · =
�n = 0. Then, Pj (x) = 1 for j = t + 1, . . . , n and

Pj (x) = dxj

�j −1∏
�j =1

(
(d − �j )xj − ∑

i=1,...,n, i �=j

�j xi

)

for j = 1, . . . , t . Therefore,

h�(x) = dt
t∏

j=1
xj

t∏
j=1

�j −1∏
�j =1

(
(d − �j )xj − ∑

i=1,...,n, i �=j

�j xi

)
.

Hence, if x� has a nonzero coefficient in h�(x), then necessarily �1 �1, . . . , �t �1; that is, the support of � is contained
in the support of �.

Therefore, the number of �’s for which A(�, �) �= 0 is bounded by the number of sequences � ∈ I (n, d) with
supp(�) ⊆ supp(�), which is equal to (

s+d−1
d

), setting s := |supp(�)|. As |�| = d, s�d and thus (
s+d−1

d
)�(

2d−1
d

).

3. Concluding remarks

3.1. On the definition of a PTAS

Definitions 1.4 (�-approximation) and 1.5 (PTAS) are crucial for our complexity result in Theorem 1.7 to hold.
Indeed, consider defining an �-approximation via an x� ∈ � satisfying

p(x�) − pmin ��|pmin| (3.1)

for a given � > 0. Such definition mimics the definition of an �-approximation that is classically used for combinatorial
optimization problems (see, e.g., [14, Chapter 17]).

We show here that one cannot obtain an �-approximation for problem (1.1) in the sense of (3.1) for each � > 0 in
polynomial time, unless P = NP, not even for d = 2. The proof is based on a reduction from the maximum stable
set problem.

Given a graph G = (V , E) with adjacency matrix A, consider the quadratic polynomial p(x) := xT(I + A)x. By
the Motzkin–Straus theorem, the minimum of p(x) over � is 1/�(G), where �(G) is the maximum cardinality of a
stable set in G. Thus, pmin = 1/�(G) > 0 and pmax �2pmin if �(G)�2, since pmax �1 = p(ei).

Lemma 3.1. Given x∗ ∈ �, one can construct a stable set S for which 1/|S|�p(x∗) in time polynomial in n.

Proof. The proof is based on the same argument used for proving Motzkin–Straus theorem. Let T denote the support
of x∗. First, we construct another point x ∈ � whose support is stable and such that p(x)�p(x∗). If T is stable,
let x := x∗. Suppose that T contains two adjacent nodes, say, nodes 1 and 2. Consider the function f (x1, x2) :=
p(x1, x2, x

∗
3 , . . . , x∗

n) in two variables x1, x2. For any point (x1, x2) ∈ �0 := {(x1, x2) | x1, x2 �0, x1 + x2 =
1 − ∑

i �3 x∗
i }, f (x1, x2) has the form ax1 + bx2 + c where a, b, c are constants depending on x∗

3 , . . . , x∗
n . As f is

linear, it attains its minimum on the segment �0 at one of its extremities, i.e., at (x1, x2) with x1 = 0 or x2 = 0. Thus,
one can construct a new point x ∈ � such that p(x)�p(x∗), whose support is contained in T and does not contain
{1, 2}. Iterating, we find a point x ∈ � whose support S is stable and such that p(x)�p(x∗). Now, p(x) = ∑

i∈S x2
i

which, using Cauchy–Schwartz inequality, implies that p(x)�1/|S|. �

Now let � be given such that 0 < � < 1 and set �′ := �/(1 − �). Assume that one can construct in polynomial time
a point x ∈ � satisfying (3.1), i.e., p(x)�(1/�(G))(1 + �′). By Lemma 3.1, one can construct in polynomial time
a stable set S such that 1/|S|�p(x)�(1/�(G))(1 + �′), which implies |S|��(G)(1 − �). This shows therefore the
existence of a PTAS for the maximum stable set problem, contradicting an inapproximability result of Arora et al. [1].
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3.2. Sharper bounds in the cases d = 2, 3

Theorem 2.2 involves the constant (
2d−1

d
)dd as factor of pmax −pmin (and thus Theorem 1.3 as well). This is a large

constant which could perhaps be improved via a tighter analysis, although this would have no impact on the claim
of existence of a PTAS. As a matter of fact, in the case of degree d = 2, 3 forms, we can prove a better constant in
Theorem 1.3 by looking more closely at the form of the function � involved in the proof of Pólya’s result. The result
for d = 2 (Theorem 3.2) is known from Bomze and De Klerk [5] and Nesterov [11], but the result for d = 3 in
Theorem 3.3 is new.

In what follows, e1, . . . , en denote the standard unit vectors in Rn. Thus, p2ei
denotes the coefficient of the monomial

x2
i in p(x).

Theorem 3.2. Let p be a form of degree d = 2 and r �0 an integer. Then,

pmin − p
(r)
min � 1

r + 1

(
max

i=1,...,n
p2ei

− pmin

)
� 1

r + 1
(pmax − pmin), (3.2)

p�(r+2) − pmin � 1

r + 2

(
max

i=1,...,n
p2ei

− pmin

)
� 1

r + 2
(pmax − pmin). (3.3)

Proof. By looking more closely at the form of the function �(x) in (2.5), one can give an upper bound for �max
depending on pmax and pmin only. Indeed, when d = 2, one can verify that

�(x) = 1

r + 2

∑
i

p2ei
xi .

Therefore,

�max = 1

r + 2
max

i=1,...,n
p2ei

� 1

r + 2
pmax. (3.4)

As wr(2) = (r + 1)/(r + 2), together with (2.9) and (2.10), this implies that the inequalities (3.2) and (3.3) from
Theorem 3.2 hold.

Moreover, p
(r)
min �0 for r �maxi p2ei

/pmin − 2. That is, for degree 2 forms, Theorem 1.1 remains valid for such r
(instead of (1.9)). �

Theorem 3.3. Let p be a form of degree d = 3 and r �0 an integer. Then,

pmin − p
(r)
min � 4(r + 3)

(r + 1)(r + 2)
(pmax − pmin), (3.5)

p�(r+3) − pmin � 4

r + 3
(pmax − pmin). (3.6)

Proof. When d = 3, one can verify that

�(x) =
n∑

i=1
p3ei

(3tx2
i − 2t2xi) + ∑

1� i<j �n

(p2ei+ej
+ pei+2ej

)txixj , (3.7)

after setting t := 1/(r + 3). Evaluating p at the simplex points ei and 1
2 (ei + ej ) yields, respectively, the relations:

pmin �p(ei) = p3ei
�pmax, (3.8)

p3ei
+ p3ej

+ p2ei+ej
+ pei+2ej

�8pmax. (3.9)
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Using (3.9), we can bound the second sum in (3.7):∑
i<j

(p2ei+ej
+ pei+2ej

)xixj �
∑
i<j

(8pmax − p3ei
− p3ej

)xixj = 8pmax
∑
i<j

xixj −∑
i

p3ei
xi(1 − xi).

Therefore,

�(x)�8tpmax
∑
i<j

xixj + 4t
∑
i

p3ei
x2
i − t (1 + 2t)

∑
i

p3ei
xi .

Using the fact that p3ei
�pmax and

∑
i xi = 1, the sum of the first two terms can be bounded by 4tpmax. Using the fact

that −p3ei
� − pmin, the third term can be bounded by −t (1 + 2t)pmin = −(r + 5)/(r + 3)2pmin. This shows

�max � 4

r + 3
pmax − r + 5

(r + 3)2
pmin. (3.10)

Together with (2.9), (2.10), and the fact that wr(3) = (r + 1)(r + 2)/(r + 3)2, this implies that relations (3.5) and
(3.6) from Theorem 3.3 hold. �

It is not clear whether this type of argument for bounding �max in terms of pmax and pmin extends for forms of
degree 4.

3.3. A probabilistic approach for estimating the grid bounds p�(k)

Nesterov [11] proposes an alternative probabilistic argument for estimating the quality of the bounds p�(k). He
introduces a random walk on the simplex �, which generates a sequence of random points xk (k�0) in the simplex
with the property that xk ∈ �(k). Thus, the expected value E(p(xk)) of the evaluation of the polynomial p(x) at xk

satisfies: E(p(xk))�p�(k). Hence upper bounds for p�(k) can be obtained by bounding E(p(xk)).
Fix a point q ∈ � (to be chosen later as a global minimizer of the polynomial p(x) over �). Let 	 be a discrete

random variable with values in {1, . . . , n} distributed as follows:

Prob(	 = i) = qi (i = 1, . . . , n). (3.11)

Consider the random process

y0 = 0 ∈ Rn, yk+1 = yk + e	k
(k�0),

where 	k are random independent variables distributed according to (3.11). In other words, yk+1 is yk + ei with
probability qi . Finally, define

xk = 1

k
yk (k�1).

Thus all xk lie in the set �(k). The following computations are given in [11]:

E(xk(i)) = qi, E(xk(i)
2) = 1

k
qi +

(
1 − 1

k

)
q2
i ,

E(xk(i)xk(j)) =
(

1 − 1

k

)
qiqj (i �= j),

E(x
�
k ) = k!

(k − d)!kd
q� if � ∈ {0, 1}n with |�| = d.

Therefore, if q is a global minimizer of p(x) over � and if p(x) is a sum of square-free monomials of degree d, then

E(p(xk)) = ∑
|�|=d

p�E(x
�
k ) = p(q)

k!
(k − d)!kd

= pminwr(d),



E. de Klerk et al. / Theoretical Computer Science 361 (2006) 210 –225 223

with k = r + d, which gives the estimate (1.6) [11, Lemma 3]. If p(x) is a form of degree 2, then

E(p(xk)) = 1

k

∑
i

p2ei
qi +

(
1 − 1

k

)
p(q) = wr(2)pmin + 1

r + 2

n∑
i=1

p2ei
qi,

with k = r + 2, which gives the estimate (3.3) [11, Theorem 2].

Remark 3.4. In these two cases (sum of square-free monomials, or degree 2), it turns out that E(p(xk)) = wr(d)pmin+
�(q). Hence, the upper bound wr(d)pmin + �max for p�(r+d) (recall (2.8)) remains an upper bound for E(p(xk)).
The identity E(p(xk)) = wr(d)pmin + �(q) is not true when d = 3. When d = 3, one can verify that E(p(xk)) =
wr(3)pmin + �(q) + �′(q), where

�′(q) :=
(

1

r + 3

)2
(

3
∑
i

p3ei
qi(1 − qi) − ∑

i<j

(p2ei+ej
+ pei+2ej

)qiqj

)
.

One can verify that �′(q)�4/(r + 3)2(pmax − pmin). Combined with (3.10), this implies that

E(p(xk))�pmin +
(

4

r + 3
+ 4

(r + 3)2

)
(pmax − pmin).

3.4. Approximating polynomials over polytopes

As observed by Nesterov [11], some results for the simplex can be extended to the problem of minimizing a degree
d form p(x) over a polytope

P := conv(u1, . . . , uN),

where u1, . . . , uN ∈ Rn. Indeed, if U denote the n × N matrix with columns u1, . . . , uN , then minimizing the
polynomial (in n variables) p(x) over P is equivalent to minimizing the polynomial (in N variables) p̃(x) := p(Ux)

over the standard simplex � in RN . Thus,

pmin,P := min
x∈P

p(x) = min
x∈�

p̃(x)

and, for an integer k�1, one can define the grid approximation:

pP(k) := p̃�(k) = min
x∈�(k)

p

(
N∑

i=1
xiui

)
.

The bounds obtained earlier for p̃�(k) translate into bounds for pP(k). For instance, when p(x) has degree 2,

pP(k) − pmin,P � 1

k

(
max

i=1,...,N
p(ui) − pmin,P

)
.

When p(x) is a sum of square-free monomials,

pP(k) − pmin,P � d(d − 1)

2k
(−pmin,P ).

However, the complexity of computing the parameter pP(k) depends on the number N of vertices, which can be
exponentially large in terms of the number n of variables.

Observe that the problem of maximizing a quadratic form over the cube [−1, 1]n is NP-hard and no PTAS can exist,
since it contains the max-cut problem. Indeed, given a graph G = (V , E), define its Laplacian matrix L as the V × V

matrix with entries Lii := −deg(i) (i ∈ V ) and Lij := 1 if i �= j are adjacent, Lij := 0 otherwise. Then,

mc(G) = max
x∈{±1}n

1

4
xTLx = max

x∈[−1,1]n
1

4
xTLx,

where the last equality follows from the fact that L � 0.
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Nevertheless, when the polytope P is given by its vertices and the number of vertices is polynomially bounded in
terms of n, our results imply the existence of a PTAS for the minimization of a fixed degree form on P.

3.5. Semidefinite approximations

Stronger semidefinite bounds can be defined for the minimum pmin of a degree d form p(x) over the standard simplex
�. For this, if p(x) = ∑

� p�x
�, consider the (even) polynomial

p̃(x) := ∑
�

p�x
2�.

The problem of minimizing p(x) over the simplex � is equivalent to the problem of minimizing p̃(x) over the unit
sphere S := {x ∈ Rn | ∑n

i=1 x2
i = 1}; that is,

pmin = min
x∈S

p̃(x).

Let 
2 denote the set of polynomials in R[x1, . . . , xn] that can written as a sum of squares of polynomials. Given an
integer r �0, define the parameter

p
(r)
min,sos := max � for which

(
n∑

i=1
x2
i

)r
(

p̃(x) − �

(
n∑

i=1
x2
i

)d
)

∈ 
2. (3.12)

If the polynomial (
∑

i xi)
r (p(x) − �

(∑n
i=1 xi

)d
) has nonnegative coefficients, then the polynomial (

∑
i x2

i )r (p̃(x) −
�
(∑n

i=1 x2
i

)d
) is obviously a sum of squares. Therefore,

p
(r)
min �p

(r)
min,sos �pmin for all r �0.

The bound p
(r)
min,sos can be computed in polynomial time with an arbitrary precision for any fixed r. This follows from

the well-known fact (see, e.g., [19]) that testing whether a polynomial can be written as a sum of squares of polynomials
can be formulated as a semidefinite program. As a consequence of Pólya’s theorem, the semidefinite bounds p

(r)
min,sos

converge to pmin as r → ∞.
Schmüdgen [22] proved (in a more general context) that every polynomial that is positive on the unit sphere S has a

representation of the form s0(x)+ (1−∑i x2
i )s1(x), where s0(x) ∈ 
2 and s1(x) ∈ R[x1, . . . , xn]. This fact motivates

the definition of the following alternative semidefinite lower bound for pmin, for any integer r �0:

max � such that p̃(x) − � = s0(x) +
(

1 −
n∑

i=1
x2
i

)
s1(x)

where s0 ∈ 
2, s1 ∈ R[x1, . . . , xn], deg(s0)�2(r + d).

(3.13)

It follows from Schmüdgen’s theorem that these bounds also converge to pmin as r → ∞. In fact, De Klerk et al. [6]
show that the bounds (3.13) coincide with the semidefinite bounds p

(r)
min,sos . That is, both approaches based on Pólya’s

result and on Schmüdgen’s result yield the same hierarchies of semidefinite bounds for the problem of minimizing a
form on the simplex.

3.6. Optimizing polynomials over the unit sphere

We group here a few observations about the complexity of optimizing a form over the sphere.
As is well-known, minimizing a quadratic form over the unit sphere is an easy problem, as it amounts to computing

the minimum eigenvalue of a matrix, a problem for which efficient algorithms exist.
As we saw in the previous subsection, the problem of minimizing an even form on the unit sphere can be reformulated

as the problem of minimizing an associated form on the simplex. Hence, upper and lower bounds are available as well
as good estimates on their quality.

On the other hand, Nesterov [11] shows that maximizing a cubic form on the unit sphere is a NP-hard problem, using
a reduction from the maximum stable set problem.
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Let us finally mention a result of Faybusovich [7] about the quality of the semidefinite bounds for the optimization
of forms on the unit sphere. Let p(x) be a form of even degree 2d, let S denote the unit sphere, and set pmin,S :=
minx∈S p(x), pmax,S := maxx∈S p(x). For an integer r �0, define the parameter

p
(r)
S := max � s.t.

(
n∑

i=1
x2
i

)r
(

p(x) − �

(
n∑

i=1
x2
i

)d
)

∈ 
2.

Thus, p(r)
S �pmin,S for all r �0. Using a result of Reznick [21], Faybusovich [7] shows that, for r �2nd(2d − 1)/4 ln 2−

n/2 − d,

pmin,S − p
(r)
S � 2nd(2d − 1)

2 ln 2(2r + n + 2d) − 2nd(2d − 1)
(pmax,S − pmin,S).

This does not yield a PTAS, since this estimate holds only for r = �(n). It remains an open problem whether
optimization of a fixed degree form over the unit sphere allows a PTAS.
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